metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Fangfang Jian,^a* Lan Zhang,^a Hailian Xiao^a and Liyun Zhang^b

^aNew Materials & Function, Coordination Chemistry Laboratory, Qingdao University of Science & Technology, Qingdao 266042, People's Republic of China, and ^bCollege of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China

Correspondence e-mail: ffj2003@163169.net

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.007 Å R factor = 0.053 wR factor = 0.169 Data-to-parameter ratio = 19.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Dichlorobis[2-chloro-5-(chloromethyl)pyridine]copper(II)

In the title compound, $[CuCl_2(C_6H_5Cl_2N)_2]$, each Cu atom has a distorted tetrahedral coordination involving two Cl⁻ anions and two 2-chloro-5-(chloromethyl)pyridine ligands. The molecular structure and packing are stabilized by intra- and intermolecular C-H···Cl hydrogen-bonding interactions. Received 27 September 2005 Accepted 18 October 2005 Online 27 October 2005

Comment

The structural and magnetic properties of copper(II) complexes of the type CuL_2X_2 have been the subjects of numerous recent publications. This is particularly true for the cases where *L* is pyridine or a substituted pyridine (Swank & Willett, 1980; Marsh *et al.*, 1981; Crawford & Hatfield, 1977). Much of this work has been concerned with the correlation of the structural properties of these complexes with their magnetic properties. In order to search for new complexes of this type, we synthesized the title compound and report here its crystal structure.

The title structure contains one copper(II), two 2-chloro-5-(chloromethyl)pyridine ligands and two chloro ligands. The coordination of the copper(II) ion is best described as distorted tetrahedral. The Cu–Cl and Cu–N bond distances are in agreement with those reported recently for dichlorobis[2-(chloromethyl)pyridine]copper(II) (Zhang *et al.*, 2004). The dihedral angle formed by the pyridine rings is 18.2 (2)°. The crystal packing is stabilized by C–H···Cl intra- and intermolecular hydrogen-bond interactions (Table 2).

Experimental

The title compound was prepared by the reaction of CuCl_2 (0.01 mol) and 2-chloro-5-(chloromethyl)pyridine (0.02 mol) in ethanol solution (50 ml) under reflux for 4 h. Single crystals of the title compound suitable for X-ray measurements were obtained by recrystallization from an ethanol solution at room temperature.

 \odot 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Crystal data

 $[CuCl_2(C_{12}H_{10}N_2)_2]$ $M_r = 458.47$ Monoclinic, C2/c a = 16.699 (4) Å b = 14.981 (5) Å c = 15.205 (3) Å $\beta = 115.74 (3)^{\circ}$ $V = 3426.4 (18) \text{ Å}^3$ Z = 8

Data collection

Enraf-Nonius CAD-4 diffractometer (i) scans Absorption correction: φ scan (North et al., 1968) $T_{\rm min} = 0.595, T_{\rm max} = 0.673$ 7596 measured reflections 3689 independent reflections 2778 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $w = 1/[\sigma^2(F_0^2) + (0.0948P)^2]$ $R[F^2 > 2\sigma(F^2)] = 0.053$ wR(F²) = 0.169 where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ S = 1.05 $\Delta \rho_{\rm max} = 1.53 \text{ e } \text{\AA}^{-3}$ 3689 reflections 190 parameters $\Delta \rho_{\rm min} = -0.97 \ {\rm e} \ {\rm \AA}^{-3}$ H-atom parameters constrained

Table 1

Selected geometric parameters (Å, °).

Cu1-N2	2.048 (4)	Cu1-Cl4	2.2548 (14)
Cu1-N1	2.071 (4)	Cu1-Cl3	2.2965 (13)
N2-Cu1-N1	169.17 (14)	N2-Cu1-Cl3	89.53 (11)
N2-Cu1-Cl4	86.58 (11)	N1-Cu1-Cl3	94.26 (10)
N1-Cu1-Cl4	89.26 (11)	Cl4-Cu1-Cl3	175.71 (5)

 $D_x = 1.778 \text{ Mg m}^{-3}$

Cell parameters from 25

 $0.25 \times 0.20 \times 0.18 \text{ mm}$

Mo $K\alpha$ radiation

reflections

 $\mu = 2.20 \text{ mm}^{-1}$

T = 293 (2) K

Block, green

 $R_{\rm int} = 0.044$

 $\theta_{\rm max} = 27.0^\circ$

 $h = -21 \rightarrow 13$

 $k = -13 \rightarrow 19$

 $l = -18 \rightarrow 18$

3 standard reflections

+ 8.8566P]

every 100 reflections

intensity decay: none

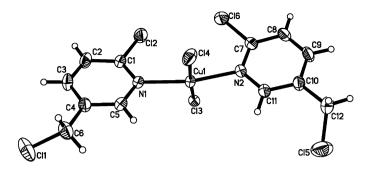

 $\theta = 4 - 14^{\circ}$

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C5-H5A····Cl3 ⁱ	0.93	2.70	3.390 (5)	131
$C6-H6B\cdots Cl4^{ii}$	0.97	2.79	3.636 (6)	146
C9−H9A···Cl4 ⁱⁱⁱ	0.93	2.62	3.444 (5)	149
$C11-H11A\cdots Cl5$	0.93	2.83	3.140 (5)	101

Symmetry codes: (i) $-x+1, y, -z+\frac{1}{2};$ (ii) -x + 1, -y, -z + 1;(iii) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{1}{2}.$

Figure 1

The structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.

H atoms were positioned geometrically and allowed to ride on their attached atoms, with C-H distances = 0.93–0.97 Å and U_{iso} = $1.2U_{eq}(C)$. The highest peak is located 1.53 Å from atom Cl5.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 1990); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors thank the Natural Science Foundation of Shandong Province (No.Y2002B06).

References

Crawford, V. H. & Hatfield, W. E. (1977). Inorg. Chem. 16, 1336-1341.

- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Gabe, E. J., Le Page, Y., Charland, J. P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.
- Marsh, W. E., Valente, E. J., Hodgson, D. J. (1981). Inorg. Chim. Acta, 51, 49-53.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359

Sheldrick, G. M. (1990). SHELXTL/PC. Siemens Analytical X-ray Instruments Inc. Madison Wisconsin, USA.

- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Swank, D. D. & Willett, R. D. (1980). Inorg. Chem. 19, 2321-2323.
- Zhang, J., Kang, Y., Wen, Y.-H., Li, Z.-J., Qin, Y.-Y. & Yao, Y.-G. (2004). Acta Cryst. E60, m599-m600.